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Bitcoin.
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Bitcoin transaction.
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Transaction features.

Inter-event time (time between transactions)

Hour of day

Time of day

Time of hour

Coin �ow (BTC value lost or gained by the user)

Input/output balance (no. outputs - no. inputs)
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Why timestamps?

Timestamped events as a behavioral biometric

Timestamps are truly ubiquitous

Timestamps are persistent

They're resilient to encryption and masking

They can be incorporated into domain-speci�c models
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Empirical data.

Blockchain 230686 (transactions through April 7, 2013)

6.3M vertices, 37.4M edges

Subset for this work

Month-long samples that contain between 100 and 1000
outgoing transactions
61 users, 6 samples each
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Preprocessing.

Collapse the transaction network into a user network through
proof of ownership

For each sample, get a time series for each feature
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Phase space reconstruction.

Takens' Theorem
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Embedding parameters.

Embedding dimension Time lag
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Classi�cation.

Multivariate Wald-Wolfowitz Test as a similarity measure in a linear-weighted kNN
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Timing information only.

ACC1(%) EER(%)

Inter-event time 30.3 22.6

Hour of day 25.1 24.8

Time of hour 4.4 48.8

Time of day 21.0 27.5
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Multiple features.

Outgoing transactions

inter-event time

hour of day

Outgoing/incoming transactions

coin �ow

input output balance

76% ACC1

6.8% EER
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Testing procedure.

Surrogate data testing, Monte Carlo method

Generate samples under a null hypothesis

(e.g. the data is random)

Compare the observed test statistic to surrogate test statistics

For each H0, perform 3 tests per sample using 3 di�erent test
statistics

Nonlinear prediction error
Mutual information
Proportion of false nearest neighbors
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Is the data random?

Generate surrogates by shu�ing the data

Random permutations destroy any structure

85% samples rejected at least one test

43% samples rejected all 3 tests

Conclusion: some transaction histories are random
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Is the data linear?

Generate surrogates by the Amplitude Adjusted Truncated
Fourier Transform (AATFT)

The AATFT destroys any non-linear correlation and preserves
the empirical amplitude distribution

78% samples rejected at least one test

31% samples rejected all 3 tests

Conclusion: some transaction histories can be described by a
linear stochastic process
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Summary.

Identi�cation and veri�cation by �nancial transaction behavior?

Maybe

Worth exploring further?

Yes

Next steps?

Generative model
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Thank you.

Thank you
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