### Time Intervals as a Behavioral Biometric

#### John (Vinnie) Monaco

Seidenberg School of CSIS, Pace University

November 11, 2015

http://vmonaco.com/dissertation

4 B 6 4 B

# Outline



- Motivation
- Background

#### 2 Data

- Description
- Empirical patterns
- 3 Modeling
  - Model specification
  - Experimental results

#### 4 Conclusions

| Introduction |            |
|--------------|------------|
| Data         | Motivation |
| Modeling     | Background |
| Conclusions  |            |

#### "You are what when you eat"

э

Motivation Background

# Newell's time scale.

#### Newell's time scale of human action

| Scale<br>(sec)   | Time<br>Units | System         | World<br>(theory) |  |
|------------------|---------------|----------------|-------------------|--|
| 10 <sup>7</sup>  | Months        |                | 2221              |  |
| 10 <sup>6</sup>  | Weeks         |                | BAND              |  |
| 10 <sup>5</sup>  | Days          |                | Britte            |  |
| 10 <sup>4</sup>  | Hours         | Task           |                   |  |
| 10 <sup>3</sup>  | 10 min        | Task           | RATIONAL<br>BAND  |  |
| 10 <sup>2</sup>  | Minutes       | Task           | 2/ 112            |  |
| 10 <sup>1</sup>  | 10 sec        | Unit task      |                   |  |
| 10 <sup>0</sup>  | 1 sec         | Operations     | BAND              |  |
| 10 <sup>-1</sup> | 100 ms        | Deliberate act | Britte            |  |
| 10 <sup>-2</sup> | 10 ms         | Neural circuit |                   |  |
| 10 <sup>-3</sup> | 1 ms          | Neuron         | BIOLOGICAL        |  |
| 10 <sup>-4</sup> | 100 μs        | Organelle      | 27002             |  |

æ

э

Motivation Background

### Behavioral biometrics.

The measure of human behavior for the purpose of identification or verification.



Motivation Background

### Timestamped events and time intervals.

- Timestamped events: keystrokes, touchscreen gestures, financial transactions, source code contributions...
- Given a series of events that occur at times  $t_0, t_1, \ldots, t_N$

#### Time interval between events

$$\tau_n = t_n - t_{n-1}$$

Motivation Background

# Outline



#### 3 Modeling

Model specificationExperimental results

#### • Conclusions

Motivation Background

# Why focus on timestamps?

- Timestamps are truly ubiquitous
- Timestamps are persistent
- Timestamps are resilient to encryption and masking
- Timestamps can generally be collected without cooperation
- Timestamps can be incorporated into domain-specific models

Motivation Background

# Problems.

- Identification Given a sequence of events, decide who they belong to (1 out of N)  $% \left( {\left( {1 1} \right)_{k \in I} } \right)$ 
  - Verification Given a sequence of events with claimed responsibility, decide whether the claim is legitimate (binary classification)
    - Prediction Given a sequence of events, predict the time of a future event

Motivation Background

# Outline



- Motivation
- Background

#### 2 Data

- Description
- Empirical patterns

### 3 Modeling

Model specificationExperimental results

#### 4 Conclusions

Motivation Background

# Bursts of activity in human behavior.



Random process (Poisson process, exponential inter-event times)



Bursty process (power-law inter-event times)

Barabasi, 2005

Motivation Background

# Time intervals of a random vs. bursty process.



Motivation Background

# Psychology of human timing.



#### Implicit and explicit timing

A B A A B A

э

Motivation Background

# Neurophysiology of human timing.





Wiener, 2011

Description Empirical patterns

# Outline



#### 4 Conclusions

Description Empirical patterns

### Datasets.

| Dataset              | Source                 | Size                        | Freq.(Hz)                       |
|----------------------|------------------------|-----------------------------|---------------------------------|
| Keystroke fixed-text | Monaco et al. (2013)   | 24k keystrokes, 60 users    | 4.4                             |
| Keystroke free-text  | Villani et al. (2006)  | 251k keystrokes, 56 users   | 3.8                             |
| Mobile               | Jain et al. (2014)     | 11k gestures, 52 users      | 3.1                             |
| Keypad               | Bakelman et al. (2013) | 6.6k keystrokes, 30 users   | 2.9                             |
| Bitcoin transactions | Reid et al. (2013)     | 239k transactions, 61 users | $2.8\!\times\!10^{-\textbf{4}}$ |
| Linux kernel commits | Passos et al. (2014)   | 16k commits, 52 authors     | $2.6 \times 10^{-\textbf{6}}$   |
| White House visits   | Hudson (2015)          | 2.7k visits, 18 people      | $1.4 \times 10^{-6}$            |
| Terrorist events     | LaFree et al. (2007)   | 1.8k events, 10 groups      | $2.8\!\times\!10^{-7}$          |

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Ξ.

Description Empirical patterns

# Keystroke.



Non-overlapping and overlapping keystrokes

э

э

Description Empirical patterns

#### Bitcoin transaction.



・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Description Empirical patterns

### Terrorist activity.





John (Vinnie) Monaco Time Intervals as a Behavioral Biometric

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Description Empirical patterns

# Outline



#### 4 Conclusions

Description Empirical patterns

# Heavy tails.



John (Vinnie) Monaco Time Intervals as a Behavioral Biometric

→ < Ξ →</p>

< 一型

< 3

Description Empirical patterns

## Preference for a log-normal.

#### Power law vs log-normal loglikelihood ratio tests

| Dataset            | Power law   | Log-normal  |
|--------------------|-------------|-------------|
| Keystroke (free)   | 0.00 (0.00) | 1.00 (1.00) |
| Keystroke (fixed)  | 0.00 (0.00) | 1.00 (1.00) |
| Bitcoin            | 0.00 (0.00) | 1.00 (1.00) |
| Kernel commits     | 0.75 (0.56) | 0.25 (0.08) |
| White House visits | 0.00 (0.00) | 1.00 (1.00) |
| Terrorist activity | 0.70 (0.20) | 0.30 (0.00) |

э

A B A A B A

Description Empirical patterns

### Time dependence.



< 17 >

< ∃→

< ∃→

Description Empirical patterns

### Non-stationarity.



John (Vinnie) Monaco Time Intervals as a Behavioral Biometric

▲ 同 ▶ → ● ▶

< ∃→

Description Empirical patterns

### Temporal clustering.



John (Vinnie) Monaco Time Intervals as a Behavioral Biometric

э

< 一型

Model specification Experimental results

# Outline



- Motivation
- Background

#### 2 Data

- Description
- Empirical patterns
- 3 Modeling
  - Model specification
  - Experimental results

#### • Conclusions

Model specification Experimental results

# Modeling approaches.



Windowed observations and event intensity



э

Model specification Experimental results

## Time interval distribution.

#### Log-normal

$$f(\tau;\mu,\sigma) = \frac{1}{\tau\sigma\sqrt{2\pi}} \exp\left(\frac{-(\ln\tau-\mu)^2}{2\sigma^2}\right) \quad \tau > 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Model specification Experimental results

# Transitioning between hidden states.



< ロ > ( 同 > ( 回 > ( 回 > ))

э

Model specification Experimental results

## Hidden Markov model.



< ロ > ( 同 > ( 回 > ( 回 > ))

э

Model specification Experimental results

### Partially-Observable Hidden Markov Model.



< A

→ < Ξ →</p>

э

< ∃ >

Model specification Experimental results

### POHMM as an extension to the HMM.

- Introduces a dependency into the HMM to account for event *types* (e.g., key names).
- Can handle missing or incomplete observations by using the marginal distributions.
- Avoids overfitting through parameter mixing (or smoothing).

Model specification Experimental results

# Consistency.

To be consistent the model must be:

- Convergent
  - Will our estimator always converge to a value?
- Asymptotically unbiased
  - Given a sample generated from a model with known parameters, can we recover the model parameters as the size of the sample increases?

Model specification Experimental results

## Residuals.



▲ 同 ▶ → ● ▶

< ∃→

Model specification Experimental results

# Outline



- Motivation
- Background

#### 2 Data

- Description
- Empirical patterns

#### 3 Modeling

- Model specification
- Experimental results

#### • Conclusions

Model specification Experimental results

### Evaluation criteria.

- Identification: rank-1 classification accuracy (ACC).
- Verification: equal error rate (EER), the point on the ROC curve where P(false accept) = P(false reject).
- Continuous verification: average maximum rejection time (AMRT), the average number of events before an impostor is detected without falsely rejecting the genuine user.

Model specification Experimental results

### Evaluation procedure.



John (Vinnie) Monaco Time Intervals as a Behavioral Biometric

\* E > < E >

< A

Model specification Experimental results

#### Fitted model example.



< ∃→

Model specification Experimental results

## Keystroke experimental results.

|                      | Folds | Dichotomy          | POHMM              | p-value            |
|----------------------|-------|--------------------|--------------------|--------------------|
| Nursery rhymes       | 4     | 0.11 (0.04)        | <b>0.00</b> (0.01) | 0.003              |
| Keystroke (fixed)    | 4     | 0.13 (0.02)        | <b>0.08</b> (0.04) | 0.041              |
| Keystroke (free)     | 6     | <b>0.02</b> (0.01) | 0.06 (0.01)        | $8.9	imes10^{-5}$  |
| Keypad               | 20    | 0.11 (0.03)        | <b>0.05</b> (0.02) | $1.3	imes10^{-8}$  |
| Mobile (w/o sensors) | 20    | 0.20 (0.03)        | <b>0.10</b> (0.02) | $2.7	imes10^{-14}$ |
| Mobile (w/ sensors)  | 20    | 0.01 (0.01)        | 0.01 (0.01)        | 0.500              |

・ 同 ト ・ ヨ ト ・ ヨ ト

Model specification Experimental results

### Continuous verification.



< ∃→

.∢ ≣ ▶

< A

Model specification Experimental results

#### Bitcoin experimental results.

- Hidden states are partially observable through the transaction direction (*incoming* or *outgoing*).
- 0.42 ACC
- 0.14 EER
- 139 AMRT

4 E 5 4

Model specification Experimental results

### Linux kernel commit experimental results.

- Hidden states are partially observable through the commit intention (*bug fix* or *feature addition*).
- 0.17 ACC
- 0.36 EER
- 41 AMRT

- A 🗐 🕨 - A

Model specification Experimental results

### White House visit experimental results.

- Hidden states are partially observable through the size of the group (*small* or *large*).
- 0.31 ACC
- 0.28 EER
- 19 AMRT

A 3 b

Model specification Experimental results

### Terrorist activity experimental results.

- Hidden states are partially observable through the *group intention*.
- 0.15 ACC
- 0.45 EER
- 37 AMRT

3 N

Model specification Experimental results

# What about anonymity?

- Timestamps can reveal your identity.
- Encryption, VPN, TOR, etc., cannot prevent that.

- A 🗐 🕨 - A

3.5

Model specification Experimental results

## Masking temporal behavior.

Alice and Bob want to be anonymous.



-

Model specification Experimental results

### Masking strategy properties.

| Finite        | The expected delay between the user and the        |  |
|---------------|----------------------------------------------------|--|
|               | arrival process should not grow unbounded.         |  |
| Anonymous     | The mix should make it difficult to identify the   |  |
|               | user.                                              |  |
| Unpredictable | The mix should make it difficult to predict future |  |
|               | behavior.                                          |  |

John (Vinnie) Monaco Time Intervals as a Behavioral Biometric

< 同 > < 三 > < 三 >

Model specification Experimental results

### Proposed mixing strategies experimental results.



# Conclusions.



▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

# Questions.

Thank you

▲□ ▶ ▲ □ ▶ ▲ □ ▶