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Factoring Integers with a Brain-Inspired Computer
John V. Monaco and Manuel M. Vindiola

Abstract—The bound to factor large integers is dominated
by the computational effort to discover numbers that are B-
smooth, i.e., integers whose largest prime factor does not exceed
B. Smooth numbers are traditionally discovered by sieving a
polynomial sequence, whereby the logarithmic sum of prime
factors of each polynomial value is compared to a threshold.
On a von Neumann architecture, this requires a large block of
memory for the sieving interval and frequent memory updates,
resulting in O(ln ln B) amortized time complexity to check each
value for smoothness. This work presents a neuromorphic sieve
that achieves a constant-time check for smoothness by reversing
the roles of space and time from the von Neumann architecture
and exploiting two characteristic properties of brain-inspired
computation: massive parallelism and constant time synaptic
integration. The effects on sieving performance of two common
neuromorphic architectural constraints are examined: limited
synaptic weight resolution, which forces the factor base to be
quantized, and maximum indegree, which forces the factor base
to be partitioned. Strategies for dealing with both constraints are
introduced and the approach is validated by modifying msieve,
which implements the multiple polynomial quadratic sieve, to
use the IBM Neurosynaptic System (NS1e) as a coprocessor for
integer factorization.

Index Terms—neuromorphic computing, quadratic sieve,
smooth number, prime factorization

I. INTRODUCTION

A number is said to be smooth if it is an integer com-
posed entirely of small prime factors. Smooth numbers

play a critical role in many interesting number theoretic and
cryptography problems, such as integer factorization [1]. The
presumed difficulty of factoring large composite integers relies
on the difficultly of discovering many smooth numbers in a
polynomial sequence, typically performed through a process
called sieving. The detection and generation of smooth num-
bers remains an ongoing multidisciplinary area of research
which has seen both algorithmic and implementation advances
in recent years [2].

This work demonstrates how current and near future neuro-
morphic architectures can be used to efficiently detect smooth
numbers in a polynomial sequence. The neuromorphic sieve
exploits two characteristic properties of neuromorphic com-
puting architectures inspired by the functioning of the brain:
• Massive parallelism: the mammalian brain contains bil-

lions of neurons that operate concurrently. Like the
brain, neuromorphic architectures contain many neuron-
like units which are updated in parallel, in stark contrast
to conventional von Neumann architectures which rely on
a central processing unit (CPU).
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• Constant-time synaptic integration: a single neuron in the
brain may receive electrical potential inputs along synap-
tic connections from thousands of other neurons. The
incoming potentials are continuously and instantaneously
integrated to compute the neuron’s membrane potential.
Like the brain, neuromorphic architectures aim to per-
form synaptic integration in constant time, typically by
leveraging physical properties of the underlying device.

Unlike the traditional CPU-based sieve, the factor base is rep-
resented in space (as spiking neurons) and the sieving interval
in time (as successive time steps). Sieving is performed by
a population of leaky integrate-and-fire (LIF) neurons whose
dynamics are simple enough to be implemented on a range
of current and future architectures. Integer factorization is
achieved using a neural processing unit (NPU) for the sieving
stage, alongside a CPU host.

Sieving can be thought of as a binary classification of
smooth/non-smooth numbers whereby a tradeoff between sen-
sitivity and specificity is achieved by varying a detection
threshold. In this light, we consider how some architec-
tural constraints affect sieving performance. Neuromorphic
architectures are subject to such constraints as low-resolution
synaptic weights, realized through limited bit size or weight
sharing, and maximum indegree, which specifies a limit on the
number of inputs to any single neuron. In terms of sieving,
low-resolution weights force the factor base to be quantized
and maximum indegree forces the factor base to be partitioned.
Four strategies for dealing with each of these constraints are
described and evaluated in order to better understand the
problem size a particular architecture can be applied to and,
conversely, what type of architecture would be needed for a
given problem size. The approach is validated by modifying
msieve, one of the fastest publicly available integer factoriza-
tion implementations, to use the IBM Neurosynaptic System
(NS1e) as a coprocessor for the sieving stage.

This article is an extension of earlier work in which the
neuromorphic sieve was introduced and synaptic weight quan-
tization strategies described [3]. Building on this previous
effort, the contributions of this article include:

1) The treatment of sieving as a binary classification and
a formula for choosing a detection threshold in order to
maximize CPU utilization and minimize sieving time.

2) Strategies for dealing with neuromorphic architectures
that impose a maximum indegree.

3) Experimental results obtained for integers up to 128 bits
using the NS1e as a sieving coprocessor.

4) Complexity analysis and estimated sieving performance
on near-future neuromorphic architectures.

The rest of this article is organized as follows. Section II
reviews background material related to integer factorization,
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smooth number detection, and spiking neural networks. Sec-
tion III describes the neuromorphic sieve. Sieving as a binary
classification is introduced in Section IV, wherein the problem
of choosing a threshold is described. Architectural constraints
are described in Section V along with strategies for dealing
with the constraints. The implementation of the neuromorphic
sieve on the NS1e and experimental results are in Section VI.
Section VII further examines the results through simulation
and contains estimated sieving times on near-future neuromor-
phic devices. Finally, Section VIII contains a discussion, and
conclusions are made in Section IX.

II. BACKGROUND

A. Integer Factorization

Integer factorization is presumed to be a difficult task when
the number to be factored is the product of two large primes.
Such a number n = pq is said to be a semiprime1 for primes
p and q, p 6= q. The RSA algorithm relies on the difficulty of
factoring n when p and q are of the same magnitude (close
to the square root of n) [4]. As log2 n grows, i.e., the number
of bits to represent n, the computational effort to factor n by
trial division grows exponentially.

Dixon’s factorization method attempts to construct a con-
gruence of squares, x2 ≡ y2 mod n [5]. If such a congruence
is found, and x 6≡ ±y mod n, then gcd (x− y, n) must be
a nontrivial factor of n. A class of subexponential factoring
algorithms, including the quadratic sieve, build on Dixon’s
method by specifying how to construct the congruence of
squares through a linear combination of smooth numbers [6].

Given smoothness bound B, a number is B-smooth if it does
not contain any prime factors greater than B. Additionally, let
v =

[
e1, e2, . . . , eπ(B)

]
be the exponents vector of a smooth

number s, where s =
∏

1≤i≤π(B) p
vi
i , pi is the ith prime, and

π (B) is the number of primes not greater than B. With a set of
π (B)+1 unique smooth numbers S =

{
s1, s2, . . . , sπ(B)+1

}
,

a perfect square can be formed through some linear combina-
tion of the elements of S, y2 =

∏
si∈S si. The reason for this is

that there exists at least one linear dependency among a subset
of the π (B)+1 exponents vectors that contain π (B) elements
each. Gaussian elimination or block Lanczos algorithm can be
used to uncover this linear dependency [7].

Smooth numbers are detected by sieving a polynomial
sequence. Sieving relies on the fact that for each prime p, if
p | f (x) then p | f (x+ ip) for any integer i and polynomial
f . To sieve the values f (x) for 0 ≤ x < M on a von Neumann
architecture, a length M array is initialized to all zeros. For
each polynomial root r of each prime p in the factor base,
ln p is added to array locations r + ip for i = 0, 1, . . . ,Mp .
This step is typically performed using low precision arithmetic,
such as with integer approximations to ln p. After looping
through each prime in the factor base, array values above a
certain threshold τ will correspond to polynomial values that
are smooth with high probability2. This process is referred to
hereafter as CPU-based sieving.

1Not to be confused with pseudoprime, which is a probable prime.
2By exploiting the fact that ln ab = ln a+ ln b.

Since the actual factorizations are lost after sieving, the
smooth candidates must subsequently be factored over the
factor base F , which also serves as a definite check for
smoothness. Factoring a number with small prime factors can
be done efficiently, and this effort can be neglected as long as
there are not too many false positives [8].

The quadratic sieve [6] detects smooth numbers of the form

f (x) =
(
x+ d

√
ne
)2 − n (1)

where x = −M2 , . . . ,
M
2 −1. The factor base F contains primes

p up to B such that n is a quadratic residue modulo p, i.e.,
r2 ≡ n mod p for some integer r. This ensures that each
prime in the factor base (with the exception of 2) has two
modular roots to the equation f (x) ≡ 0 mod p, increasing
the probability that p | f (x). If F contains b primes, then at
least b+1 smooth numbers are needed to form the congruence
of squares.

It is the sieving stage of the quadratic sieve that is the focus
of this work. Sieving comprises the bulk of the computational
effort in the quadratic sieve and the relatively more complex
number field sieve (NFS) [9]. On a von Neumann architecture,
sieving requires at least 1

2M +M
∑
p∈F\2

2
p memory updates

where F \ 2 is the set of factor base primes excluding
2. Given probability u−u of any single polynomial value
being smooth, where u = lnn

2 lnB , an optimal choice of B is
exp

(
1
2

√
lnn ln lnn

)
[8]. This yields a total runtime of B2,

where the CPU-based amortized time to sieve each value in
the interval is ln lnB.

B. Spiking Neural Networks

Neuromorphic computing encompasses several fields of
research geared towards the design, development, and im-
plementation of computers inspired by the the biological
brain. In stark contrast to the von Neumann architecture,
comprised of a central processing unit (CPU) and a separate
memory unit, neuromorphic computing architectures make no
distinction between processor and memory as memory is co-
located with neuron-like processing units [10]. This feature
promises to alleviate the von Neumann bottleneck between
memory and CPU [11], and, faced with the eventual demise of
Moore’s Law, a wide range of neuromorphic architectures have
recently emerged [12]. Many of these architectures implement
or simulate spiking neural networks.

Spiking neural networks are considered the third generation
of neural networks, coming after the multilayer perceptron
(MLP) and “activation function” networks [13]. The spiking
neuron model aims to provide more biological realism than its
predecessors, whereby the MLP can be viewed as a snapshot
in time of a SNN, and activation function networks can be
viewed as encoding spike rates over time.

There are many flavors of spiking neuron model which
vary by number of parameters, neuron dynamics, and response
properties. This work uses a discrete leaky integrate-and-fire
(LIF) neuron, considered to be one of the simpler models
and applicable to a wide range of neuromorphic architectures
[12]. Let V (t) and A (t) be the membrane potential and spike
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output, respectively, at time t. The LIF neuron model used in
this work is defined by the following update equations:

1) Integrate. Spikes emitted by presynaptic neuron i at
time t− 1, denoted by Ai (t− 1), are received at time t over
weighted synaptic connections wi. The weighted spikes are
integrated and a leak λ is applied. The neuron’s membrane
potential is updated according to

V (t) = V (t− 1) +
∑
i

Ai (t− 1)wi + λ . (2)

2) Spike. The neuron emits a spike if it’s membrane
potential has reached the threshold α,

A (t) =

{
1 if V (t) ≥ α
0 otherwise

. (3)

3) Reset. If the neuron spikes, it’s membrane potential resets
to 0. The membrane potential is also clamped by a lower bound
of 0. The reset behavior is given by

V (t) =


0 if V (t) ≥ α
0 if V (t) < 0

V (t) otherwise
. (4)

Time advances in discrete steps, and Equations 2, 3, and 4
are applied in succession at each time step. Additionally, the
initial membrane potential of each neuron can be specified at
time t = 0, denoted by V0. The complete set of parameters
for each neuron is {V0, α, λ} and wi specify the weighted
synaptic connections.

III. NEUROMORPHIC SIEVE

A. Network Construction

Construction of the neuromorphic sieve is demonstrated
through an example using the semiprime n = 91, quadratic
polynomial f(x) =

(
x+ d

√
91e
)2 − 91, and sieving interval

x = −5, . . . , 4. The smoothness bound is set to B = 5
resulting in factor base F = {2, 3, 5}, the primes up to
B such that the Legendre symbol

(
n
p

)
= 1, i.e., n is a

quadratic residue modulo p. Sieving is also performed with
prime powers, pe for e > 1, that do not exceed the magnitude
of the polynomial over the sieving interval, namely 32, 33, and
52. Powers of 2 are not included since they do not have any
modular roots to the equation f (x) ≡ 0 mod 2e for e > 1.

The neuromorphic sieve represents the factor base in space,
as tonic spiking neurons, and the sieving interval in time
through a one-to-one correspondence between time and the
polynomial sequence. Let t ≡ (x− xmin), where t is time, x
is the sieving location that corresponds to t, and xmin is the
first sieving value. Then, polynomial values can be calculated
by f (x) = f (t+ xmin). Each tonic neuron corresponds to a
prime (or a power of a prime) in the factor base and spikes only
when it divides the current polynomial value. If enough tonic
neurons spike at time t, then f (x) is likely smooth since each
neuron represents a factor of f (x). This formulation reverses
the roles of space and time from the CPU-based sieve, in which
the sieving interval is represented in space, as an array, and a
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Fig. 1. Example neuromorphic sieving network. Top layer contains tonic
spiking neurons; middle layer selects the highest prime power; bottom layer
performs the test for smoothness. Reprinted from [3].

doubly nested loop iterates over over primes in the factor base
and locations in the sieving interval.

The sieving network is comprised of three layers of spiking
neurons arranged in a tree structure (Figure 1). The top layer
contains tonic spiking neurons for each root of each prime in
the factor base, as well as prime powers up to the magnitude of
the polynomial. The middle layer selects the highest power of
each prime that divides the polynomial value by inhibiting the
lower powers. The bottom layer contains a single neuron that
performs a test for smoothness by integrating the log-weighted
factors. Configuration of each layer is as follows.

Top layer. For each modular root r of each prime power pe

(including factor base primes, for which e = 1), designate a
neuron that will spike with period pe and phase r (Figure 1, top
layer, given by per, where subscripts denote the modular root).
Due to the equivalence between t and f (x), this neuron will
spike only when pe|f (x). It is also the case that if pe|f (x)
then pe|f (x+ ipe) for any integer i, thus only tonic spiking
behavior for each modular root is required. Since the factor
base is comprised only of primes up to B such that n is a
quadratic residue modulo p, each prime p > 2 in the factor
base has exactly two modular roots. Generally, a prime may
have up to d modular roots to the equation f (x) ≡ 0 mod p
for a polynomial of degree d.

Middle layer. The tonic neurons for each prime (top layer)
are connected through excitatory synapses (w = 1) to factor
neurons that spike if either modular root spikes (Figure 1,
middle layer). Therefore, the respective factor neuron spikes
if per1 |f (x) or per2 |f (x). Using a LIF neuron model, this
behavior is achieved using synapse weights of the same
magnitude as the postsynaptic neuron threshold. Inhibitory
connections (w = −1) are then created between the prime
powers in the top layer and lower prime powers in the middle
layer so that higher powers suppress the spiking activity of
the lower powers. The inhibitory connections are required to
ensure that a spike is generated only for the highest prime
power that divides the current polynomial value.

Bottom layer. Synapse connections from the factor neurons
(middle layer) to the smoothness neuron are weighted propor-
tional to ln pe (Figure 1, bottom layer). The smoothness neuron
emits a spike if the logarithmic sum of factors reaches the
threshold ln |f (x) |, signaling whether f (x) can be completely
factored over the factor neurons that spiked in the middle
layer. This stateless behavior is achieved by setting the leak
λ = − ln |f (x) | and threshold α = 0.
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TABLE I
NEURON PARAMETERS FOR THE THREE NEURON TYPES.

Neuron
Parameter

Tonic
(top)

Factor
(middle)

Smoothness
(bottom)

Potential V0 − (r + 1− xmin) mod pe 0 0

Threshold α pe 1 0

Leak λ 1 0 − ln (x)

The neuron parameters for each layer are summarized in
Table I (see Section II-B for neuron model). The middle and
bottom layers are stateless, i.e., their membrane potentials
never carry over to the next time step, while the dynamics
in the top layer encode successive polynomial values.

B. Space and Time Complexity
In general, a neuromorphic sieving network with factor base

of size b primes requires at least 3b+1 neurons (2b in the top
layer, b in the middle, and 1 in the bottom) and 3b excitatory
synaptic connections. This does not include neurons for prime
powers and inhibitory synaptic connections, which depend on
the magnitude of the polynomial |f (x) | and sieving interval
length M . Prime powers with roots outside of the sieving
interval need not be considered since these will never spike.

Given the probability that any single polynomial value f (x)
is B-smooth is u−u, where u = lnn

2 lnB , the expected number of
sieve values that must be examined to find one smooth number
is uu [8]. Since the factor base contains b primes, at least b+1
smooth numbers are needed to uncover a linear dependency
among the exponents vectors and complete the factorization.
With the amount of work per sieve value being ln lnB on a
von Neumann architecture, the total CPU-based sieving time
is given by

T (n) = uu (b+ 1) ln lnB (5)

where B = exp
(

1
2

√
lnn ln lnn

)
. Comparatively, the neuro-

morphic sieve spends exactly one step per sieve value, which
eliminates the ln lnB term above, leading to a total sieving
time of

T (n) = uu (b+ 1) . (6)

Table II shows the time complexity of the CPU-based sieve
and the neuromorphic sieve as a function of n bits. The
largest relative gains are achieved for small problems since
the speedup itself follows ln lnB. For example, a 3× speedup
is achieved around 512 bits, and this grows to only a 3.5×
speedup at 1024 bits. However, there is a hidden cost in
Equation 5 which is often ignored: that is the smooth number
detection rate, i.e., the probability of detecting a number that
is actually smooth. In sieving time complexity analyses, the
effects of missed smooth numbers are often considered to
be negligible on total runtime. However, there is a tradeoff
between an algorithm’s ability to correctly detect numbers
that are smooth and correctly reject numbers that are not
smooth, due to such optimizations as low precision arithmetic,
discarding small primes in the factor base, and ignoring prime
powers. In the next section, we examine this tradeoff by
treating smooth number detection as a binary classification
problem and varying the choice of threshold.

TABLE II
CPU VS NPU SIEVING TIME COMPLEXITY.

n bits CPU Time NPU Time Speedup

64 6.4× 103 3.4× 103 1.87
128 1.9× 106 0.8× 106 2.30
256 1.1× 1010 0.4× 1010 2.72
512 4.7× 1015 1.5× 1015 3.13
768 1.6× 1020 0.5× 1020 3.36

1024 1.3× 1024 0.4× 1024 3.53

IV. SIEVING AS A BINARY CLASSIFICATION

Sieving a polynomial sequence can be thought of as a binary
classification problem in which smooth integers are the posi-
tive class and non-smooth integers are the negative class. With
the neuromorphic sieve, each polynomial value is assigned a
score that is the membrane potential of the smoothness neuron
(Figure 1, bottom layer). As the threshold of the smoothness
neuron is varied, there is a tradeoff between false positive rate
(FPR) and false negative rate (FNR) from which a receiver
operating characteristic (ROC) curve is obtained. This same
principle applies to CPU-based sieving: due to errors resulting
from low precision arithmetic, some of the array values above
the threshold will end up not being smooth and some values
that are smooth will remain below the threshold, with the
threshold controlling a tradeoff between FPR and FNR.

Ideally, the detection threshold of the smoothness neuron3

would follow the logarithmic magnitude of the polynomial
such that λ (t) = ln |f (t+ xmin) |. Typically, this cannot be
realized since the leak in most neuromorphic architectures that
implement a LIF neuron model is constant, i.e., λ (t) = λ.
Due to this constraint, and other architectural constraints
described in the next section, both the CPU-based sieve and
neuromorphic sieve must operate somewhere along the ROC
curve, trading more false positives for a better chance of
not missing any smooth values. As the threshold increases,
the number of false positives will decrease. Conversely, the
number of false negatives increases with the threshold, and
as a result, more time must be spent sieving due to lower
sensitivity. Modifying Equation 6 to account for the smooth
detection rate, the total sieving time becomes

T (n) =
uu (b+ 1)

1− FNR
. (7)

From Equation 7, it can be seen that sieving time is minimized
with a perfect smooth detection rate (FNR = 0), the case that
is traditionally assumed in sieving time complexity analyses.

A. ROC Curve Example

As an example, consider the sieving performed for a single
64-bit integer, n = 12425785886937261613 = 3973371161×
3127265333. A smoothness bound of 799 is chosen, resulting
in 58 factor base primes. Including prime powers, the factor
base contains 157 factors. There are 76 smooths over a sieving

3Note that the leak λ is used as a detection threshold to achieve stateless
behavior in the smoothness neuron. See Section II-B for the neuron model
and Table I for neuron parameters.
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Fig. 2. Membrane potential of the smoothness neuron during time t =
[87500, 87599]. The smoothness neuron spikes three times; of these, two
are actually smooth (true positives) and one is not smooth (false positive).
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Fig. 3. Error rates and score densities obtained by the neuromorphic sieve
for the 64-bit semiprime n = 12425785886937261613. Note that the FNR
and FPR in (a) can be interpreted as the cumulative distribution (CD) and
complementary CD, respectively, of the score densities shown in (b).

interval of length 217, which is centered on 0. Sieving starts
with x = 1−216 at time t = 0 and ends with x = 216 at time
t = 217.

The detection threshold of the smoothness neuron is set to
λ = 32, just below the mean log magnitude of the polynomial,
which is about 33. At this point, the FPR is 1.033% and the
FNR is 0%. Figure 2 shows a portion of the sieving interval
during time t = [87500, 87599] (chosen to include both true
positives and false positives). During this interval, three values
are detected as smooth. Of these, 2 are actually smooth (true
positives) and 1 is not smooth (false positive). There are no
false negatives in this interval.

The complete ROC curve is derived by varying the threshold
of the smoothness neuron and calculating the FPR and FNR
at each threshold value. Figures 3a and 3b show the FPR and
FNR as a function of threshold value and the score densities
of each class, respectively. The equal error rate (EER) is the
point on the ROC at which FPR and FNR are equal, in this
case 0.165%.

B. Choosing a Threshold

The neuromorphic sieve operates alongside a CPU host,
which must check each candidate for smoothness and recover
the prime factorizations over F needed for the linear algebra
stage. B-smooth candidates are generated by the NPU and
transmitted to the CPU host as spike timings. Due to the
correspondence between time and polynomial value, the CPU
host needs only to know the time at which the NPU emits a

spike to recover the polynomial value and check the candidate
for B-smoothness.

Given the speed of the NPU, however, the choice of
threshold on the smoothness neuron determines how often
the candidates will be generated, and the magnitude of the
polynomials and factor base size will determine how long it
takes the CPU to check each candidate. The optimal choice of
threshold is one in which CPU utilization is maximized, but
does not exceed 100%. This ensures that the NPU generates
the maximum number of candidates that the CPU host can
handle, but not too many candidates are generated such that
they must be buffered. In other words, the threshold should
be the minimum choice that does not exceed a 100% CPU
utilization rate, thereby minimizing the FNR.

Under the assumption that smooth candidates follow a
random (Poisson) process, and the time to check each can-
didate is constant, neuromorphic sieving can be treated as an
M/D/1 queue. Let tc be the time to check each candidate for
smoothness, Ps be the spiking probability of the smoothness
neuron, and f the clock frequency of the NPU. The arrival rate
is then given by the spiking rate of the smoothness neuron,
fPs, and the service rate is given by the inverse time it takes
the CPU to check each candidate for B-smoothness, 1

tc
. From

this, CPU utilization is calculated as

ρ = fPstc . (8)

The threshold λ of the smoothness neuron should be adjusted
such that ρ is just below 1. Otherwise the arrival rate will
exceed the service rate, resulting in an unbounded buffer and
more time spent checking candidates for smoothness by the
CPU host than the actual sieving.

In the example above, consider an NPU with clock rate
f = 1GHz and a CPU host check time of tc = 1µs. Then,
the threshold should be chosen where Ps = 106

109 = 0.001.
This occurs at λ = 39 which gives an FPR of 0.056% and
FNR of 1.316%. Alternatively, Equation 8 can be used to
determine the optimal clock rate of the NPU, given the CPU
check time and desired spiking probability. Let the desired
spiking probability be Ps = 0.1, which achieves empirical
FPR and FNR of 9.093% and 0%, respectively, at λ = 22.
Then, f = 106

0.1 = 10MHz is the maximum NPU clock rate
that can be used without overwhelming the CPU.

V. ARCHITECTURAL CONSTRAINTS

Neuromorphic hardware may impose architectural con-
straints that limit the performance of the neuromorphic sieve
or, alternatively, limit the problem size (n bits) that a particular
architecture can be applied to. Accuracy, speed, and energy
efficiency are often conflicting requirements for neuromorphic
chip design, which must typically trade one for the other. Low-
resolution synaptic weights may be employed for increased
speed at the cost of decreased accuracy for some tasks. The
number of synaptic connections to any single neuron may
also be limited (creating a maximum indegree) for decreased
communication requirements. This section addresses two such
architectural constraints in neuromorphic systems and de-
scribes strategies for mitigating the performance degradation
imposed by the constraints.
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A. Limited Resolution: Synaptic Weight Quantization
Synaptic weight resolution refers to the number of different

values a synaptic connection weight can assume. On low-
resolution neuromorphic architectures, synapse weights may
be restricted to, e.g., 8-bit values which reduces the amount
of space and energy required to compute compared to higher-
resolution representations, such as 32 bits or 64 bits. In the
worst case, synaptic connections are binary valued and can be
either “on” or “off” (alternatively, -1 or +1). Such a binary
neural network can be implemented efficiently in hardware
since every synaptic connection has the same strength, and
synaptic integration amounts simply to counting the number
of spikes received at each neuron which effectively eliminates
multiplications. Recent work in machine learning has demon-
strated that this is not especially detrimental to performance,
and state-of-the-art performance can be achieved even with
networks of only binary precision for some tasks [14].

Limited synaptic weight resolution also comes through
the use of weight sharing whereby a population of synaptic
connections must share a smaller number of unique weights.
For example, on TrueNorth, synapse weights are stored in
signed 9-bit memory locations, permitting up to 29−1 different
values ranging from [−255, 255]; however each neuron can
receive spikes from at most 4 unique synapse weights. This
leads to an efficient digital implementation, since synaptic
integration can be performed using a lookup table and just
4 multiplications [15].

To summarize, bit size limits the number of unique values
a single synapse can assume, and weight sharing limits the
number of unique values a population of synapses can assume.
Both bit size and weight sharing limit synaptic weight reso-
lution and require the synapse weights of the neuromorphic
sieve to be quantized. Specifically, given a factor base of size
F (including prime powers) and an architecture that has kw
unique weights, with F > kw , the synapse weights from
the factor neurons to the smoothness neuron (middle-bottom
layers, Figure 1) must be quantized to kw unique values. To
accomplish this, four different weight quantization strategies
are described.

Regress: With kw weights shared among F factors, the
regress strategy attempts to construct a step function with kw
steps that minimizes the mean squared error (MSE) to the log
factors. This is performed by fitting a single variable regression
tree with kw leaf nodes to the log factors using MSE as the
optimization criterion. The quantized weight for each factor is
determined through a lookup in the regression tree.

Inverse: Similar to the regress strategy, the inverse strategy
uses a step function to obtain the quantized weights. Instead
of the MSE, the objective function is a weighted MSE with
weights given by the inverse logarithm of each factor. This
coerces the quantized weights of smaller, frequent factors to
be more accurate than larger factors.

Uniform: The uniform strategy assigns each factor a weight
of 1; thus the smoothness neuron simply counts the number of
factors that divide any sieve value. This strategy is compatible
with architectures that implement binary networks.

Integer: The integer strategy assigns each factor a weight
equal to the log factor rounded to the nearest 32-bit integer,
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Fig. 4. Synaptic weight quantization example using kw = 4 shared weights
with the exception of the integer strategy which uses 32-bit weights and is
not compatible with weight sharing. Reprinted from [3].

compatible only with architectures that support 32-bit weights
with no weight sharing.

The four quantization strategies are summarized in Figure
4 for kw = 4 applied to the sieving example in Section IV.
Using only integer arithmetic, the integer strategy is optimal
as it most closely approximates the log function. The uniform
strategy is a worst case in which only binary (0 or 1) weights
are available. Note that only the regression, inverse, and
uniform strategies, which have at most 4 unique weights, are
able to run on an architecture with shared weights, such as
TrueNorth. The integer strategy exceeds the limit of 4 unique
weights to any single neuron, thus is not compatible with
architectures that have shared weights.

B. Limited Topology: Factor Base Partitioning

A key architectural feature that the neuromorphic sieve
exploits is the ability to perform a summation in O (1) time
through synaptic integration. This occurs at the smoothness
neuron where the spikes from all of the factor neurons are
integrated to perform a logarithmic summation of the factors.
However, not all neuromorphic processors have the ability
to integrate spikes from an unlimited number of presynaptic
neurons in O (1) time. In many cases, there is a maximum
indegree that limits the number of inputs that can be integrated
in a single step. For example, on TrueNorth, each neuron
has 256 dendrites along which it can receive spikes and,
alternatively, can transmit spikes to up to 256 axons, making
the maximum indegree/outdegree of each neuron 256 [15].
Generally, having a maximum indegree permits each neuron
to perform a summation of up to kd inputs in O (1) time,
where kd is the maximum indegree of the architecture. This
limits the number of unique factors that can be integrated in
a single step to kd, and as a result, a factor base with more
than kd elements must be partitioned into kd subsets.

As an example, consider the sieving network from Section
III with F = 6 (including prime powers) and suppose this
problem must be implemented on a neuromorphic architecture
with kd = 3. That is, the factor base must be partitioned into 3
subsets. This is performed by creating an additional partition
layer with exactly kd neurons between the factor neuron layer
and the smoothness neuron.

Figure 5 demonstrates a partitioned factor base and depicts
the network activity at time t = 6 in which factors 2, 3, and 5
are active (shown in gray). The factor neurons are partitioned
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Fig. 5. Neuromorphic sieve example with maximum indegree of kd = 3.
The partition layer splits the factor base neurons into kd subsets to satisfy the
architectural constraint having maximum indegree kd (compare to Figure 1).
This example shows neuron activity at time t = 6 using the example from
Section III; factors {2, 3, 5} are active and a collision occurs at the leftmost
partition neuron (3rd layer). A partitioning strategy amounts to forming the
connections between the factor layer and partition layer (2nd-3rd layers).

into kd subsets with the factors from each subset connected to
a single partition neuron. The partition neuron spikes if any of
the factor neurons spike, effectively performing a logical OR
operation between the inputs. The connections between the
partition layer and the smoothness neuron are weighted by
the smallest log factor in each subset, as this is the minimum
factor represented by each partition neuron.

1) Spike Collisions: A spike collision occurs when spikes
from two different factors in the same subset are received by
a neuron in the partition layer at the same time. When this
happens, the partition neuron will activate and send a spike
to the smoothness neuron; however, the smoothness neuron
knows only that at least one factor in the subset has spiked. In
Figure 5, the factor neurons are partitioned into kd subsets of
similar size and the spikes from neurons 2 and 3 collide since
they are both connected to the same neuron. The membrane
potential of the smoothness neuron is S (6) = ln (2× 5) since
it sees only spikes along synapses with weights ln 2 and ln 5
corresponding to the subsets with minimum factors 2 and 5,
respectively; it is absent to the fact that the 3 has also spiked.

The probability of a spike collision can be determined
analytically. This is the probability of at least m out of N
events occurring where m = 2 and N is the number of
possible events [16, Ch. IV, Theorem 3.1]. Applied to spike
collisions, the event probabilities are given by the probability
that each factor neuron spikes, which is 2

pe for factors with
2 modular roots. The probability of each partition neuron
receiving at least m spikes is given by

Pm = Sm −
(

m

m− 1

)
Sm+1 + (9)

+

(
m+ 1

m− 1

)
Sm+2 − · · · ±

(
N − 1

m− 1

)
SN

where

Sm =
∑

1≤i1≤i2···≤im≤N

P (Ai1 ∩Ai2 ∩ · · · ∩Aim) . (10)

Pm is the probability of at least m events occurring, and
P (Ai1 ∩Ai2 ∩ · · · ∩Aim) is the intersection probability of
spike inputs Ai1 , . . . , Aim from the factor neurons. Note that
Pm is different for each partition neuron since it depends on
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Fig. 6. Four partitioning strategies applied to factor base F ={
2, 3, 5, 32, 52, 33

}
with kd = 3. Each strategy is defined by its partition

function g (pe). Subsets are formed by applying the partition function to the
factors and then creating subsets of equal sum using Algorithm 1.

which factor neurons it receives spikes from. Spiking proba-
bility is given by P1 and collision probability (the probability
of at least two factors in a subset spiking simultaneously) is
given by P2. While this formula can be computed for small
problems, it remains intractable for large m and N .

2) Partitioning Strategies: Given maximum indegree kd,
a factor base partitioning strategy specifies how to split the
factor base into kd subsets. Generally, the number of ways
to partition a factor base with F elements into kd subsets is
the number of kd-combinations, or C (F − 1, kd). However,
it may not make sense to consider the total number of factor
base partitions. Instead, factors of similar magnitude should
be kept in the same subset with reasoning as follows. The
smoothness neuron sees only that a partition neuron is active;
it doesn’t know which factor or how many factors have
spiked in each subset. This contributes to an information loss
at the smoothness neuron. To minimize this loss amounts
to minimizing the variance between factors in a particular
subset, which leads to subsets that contain factors of similar
magnitude.

Further justification for grouping factors of similar mag-
nitude is based on the probability of spike collisions. The
probability of any factor neuron being active is 2

pe due to
each factor having 2 polynomial roots (ignoring the effect of
inhibition from higher powers). Mixing factors of different
magnitude will cause spikes from smaller factors to frequently
collide with spikes from the larger factors. In Figure 5, if 2
and 52 were both connected to the same partition neuron, that
neuron would spike at least every other time step and it would
not be known whether this was due to 2 or 52, which have
very different spiking probabilities and contribute factors that
differ by an order of magnitude to the sieving value.

Given that similar factors should be kept in the same subset,
a partitioning strategy amounts to slicing an array of the sorted
factors into kd different slices using kd−1 indices, commonly
referred to as the multi-partitioning problem [17]. To partition
the factor base, the kd−1 indices are chosen so as to minimize
the difference between the sums of a function g (pe) applied
over each subset.

Four different partitioning strategies are evaluated which
differ only in the way g (pe) is defined. The effect of each
partition function is shown in Figure 6 using the same example
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Algorithm 1 Partition an array G into k subsets of equal sum.
Input: sorted array G, number of subsets k
Output: list of k − 1 indices idx

1. idx = [], prev_idx = 0, remaining_sum =
∑
G

2. for i in range(k):
3. target_sum = remaining_sum / (k - i)
4. next_idx = prev_idx + 1
5. acc = G[prev_idx]
6. while abs(acc + G[next_idx] - target_sum)
7. < abs(acc - target_sum):
8. acc += G[next_idx]
9. next_idx += 1

10. idx.append(next_idx)
11. prev_idx = next_idx
12. remaining_sum -= acc
13. return idx

from Section III under constraint kd = 3.
Constant: The partition function is constant, g (pe) = 1.

This results in kd subsets of equal size.
Logarithmic: Factors are partitioned by their logarithm

such that g (pe) = ln pe. This places smaller factors together
and keeps larger factors apart, resulting in more spike colli-
sions for smaller factors since these are both more frequent
and co-occur in the same subsets.

Inverse logarithmic: Factors are partitioned by their inverse
logarithm, g (pe) = 1

ln pe . This has the opposite effect of the
logarithmic partition function, placing larger factors together
and keeping smaller factors separate.

Probabilistic: Factors are partitioned according to their
spiking probability, where g (pe) = 2

pe and g (2) = 0.5.
The partition problem is NP-complete. However, the re-

striction of keeping similar sized factors together leads to an
efficient approximation which is a requirement in order to not
increase the total runtime complexity of the sieving portion
of integer factorization. Algorithm 1 greedily minimizes the
difference between the sums of each subset in a single pass
through the sorted array of factors. This is performed by
stepping through the array and appending the next element
to the current subset if the subset sum is closer to the target.
When it is determined that adding the next element to the
current subset is further from the target, a new subset is created
and the target is updated by the remaining factors.

C. Limited Resolution and Topology
Given both shared synapse weights and maximum indegree,

weight quantization and factor base partitioning must both be
applied. This is only necessary if F > kd > kw. If kd ≤ kw,
then weight quantization is not necessary.

Weight quantization and factor base partitioning are per-
formed in a two step process. First, the factor base is parti-
tioned into kd subsets using one of the partitioning strategies.
The magnitude of each subset is approximated by the smallest
factor which provides a set of reduced factors F ′ of size kd.
The weight quantization strategy is then applied to the reduced
factors, treating them the same as the original factor base.

VI. CASE STUDY

We modified msieve [18] to use the IBM Neurosynaptic
System (NS1e) [15] for the sieving stage of integer fac-
torization. msieve is a highly optimized publicly available

implementation of the multiple polynomial quadratic sieve
(MPQS, a variant of the quadratic sieve [19]) and NFS
factoring algorithms. The core sieving procedure is optimized
to minimize RAM access and arithmetic operations. Sieving
intervals are broken up into blocks that fit into L1 processor
cache using one byte per sieve value. The CPU host used in
this work is a 2.6 GHz Intel Xeon E5-2670 which has an L1
cache size of 32 kB. Therefore, a sieving interval of length
M = 217 would be broken up into four blocks that each fit
into L1 cache.

The NS1e is a single-chip ASIC with 4096 cores and 256
LIF neurons per core, able to simulate a million spiking
neurons while consuming under 100 mw at a normal operating
frequency of 1 kHz. The TrueNorth architecture, implemented
by the NS1e, specifies low-precision synaptic weights through
shared axon types [20]. Each neuron can receive inputs from
up to 256 axons, and each axon can be assigned one of four
types. For each neuron, axons of the same type share a 9-bit
signed weight. Thus, there can be at most 4 unique weights to
any single neuron, and all 256 neurons on the same core must
share the same permutation of axon types. These constraints
require weight quantization for problems with greater than 4
factors (kw = 4) and factor base partitioning for problems
with greater than 256 factors (kd = 256).

The neuron model in this work (Section II-B) is compatible
with the TrueNorth architecture, which supports different
modes of leak, reset behavior, and stochasticity [15]. Tonic
spiking neurons are configured for prime powers up to 218, the
maximum period that can be achieved by a single TrueNorth
neuron with non-negative membrane potential. On a digital
architecture, at least pe distinct membrane potential values
are needed to create a tonic spiking neuron with period pe.
On TrueNorth, the positive membrane potential threshold α
is an unsigned 18-bit integer. The NS1e communicates with
the CPU host via UDP, transmitting a single packet each
time the smoothness neuron spikes. TrueNorth is a pipelined
architecture, and the spikes from the tonic spiking neurons
at time t are received by the smoothness neuron at time
t + 2 (t + 3 with the partition layer). As a result, the
smoothness neuron spikes when f (t+ xmin − 2) is likely
smooth (f (t+ xmin − 3) with the partition layer).

A. Experimental Results

Results were obtained for n ranging from 32 to 128 bits. For
each bit size, 100 cryptographically secure p and q of equal
magnitude were generated using the Python Cryptography
Toolkit [21] for a total of 9700 integer factorizations. For
each n, B is set to exp

(
1
2

√
lnn ln lnn

)
. The factor base

size b ranges from 8 for 32-bit n to 1224 for 128-bit n.
Including prime powers, this requires 63 tonic spiking neurons
for 32-bit n and 2707 tonic spiking neurons for 128-bit n,
having 32 and 1354 connections to the smoothness neuron,
respectively. The factor base size exceeds kd = 256 at about
80 bits. Beyond this size, factor base partitioning must be
employed using one of the strategies described in Section V-B.
All the weight quantization and partitioning strategies were
actually implemented and deployed to the NS1e except for
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Fig. 7. Benchmark results showing CPU and NPU ticks per sieve value
(left) and CPU check time per smooth candidate (right). Bands show 95%
confidence interval (CI) obtained over 100 different n of equal magnitude.

the integer weight quantization which requires more than 4
unique weights.
msieve implements the MPQS, a variant of the quadratic

sieve that utilizes multiple quadratic polynomials with unique
coefficients [19]. This enables many smaller intervals to be
sieved as opposed to a single large interval, leading to reduced
overall magnitude of the polynomial values and a greater
chance of containing a smooth number. For each polynomial,
the sieving interval M is set to 217. Once the interval is
exhausted, a new polynomial is generated and the sieving
continues again with M set to 217. This process continues until
at least b + 1 smooth numbers are detected for each n. The
ground truth for smooth numbers is obtained by performing a
definite check for smoothness for each polynomial value.

The neuromorphic sieving procedure is summarized as
follows. For each polynomial for each n, the factor base
primes are determined by msieve and then used to construct
the neuromorphic sieve on the TrueNorth architecture, as
described in Section III. Polynomial roots of the prime factors
are calculated efficiently by the Tonelli-Shanks algorithm, and
roots of prime powers are obtained through Hensel lifting.
The resulting network is deployed to the NS1e, which runs
for M +2 time steps (M +3 with partitioning). On each time
step, if a smooth value is detected, a spike is generated and
transmitted to the host which uses the timestamp to check the
corresponding polynomial value for smoothness.

As a benchmark, the minimum number of CPU ticks per
sieve value and the measured CPU check time are shown in
Figure 7. The minimum CPU ticks per sieve value correspond
to the minimum number of memory updates that need to
be performed on the array that contains the sieving interval.
Depending on the size of the sieving interval, additional
ticks may be needed for memory access. Comparatively, the
neuromorphic sieve spends exactly one tick per sieve value.

For each n, the check time per smooth candidate was mea-
sured with nanosecond resolution using differences between
the clock_gettime function on a single dedicated core of
the CPU host. These values are later used to determine the
threshold of the smoothness neuron, which depends on the
check time and NPU clock frequency; alternatively, the NPU
clock frequency is determined by a desired spiking probability
and check time (see Section IV-B). A polynomial of degree
3, determined to provide the best fit, is used to estimate the
check times for larger problem sizes in the next section.
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Fig. 8. ROC curves for 128-bit n comparing each weight quantization strategy
(left) and partition function (right). Note that the CIs are relatively narrow.
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Fig. 9. Weight quantization strategy EER (right) and FPR compared to CPU
FPR (left). Constant partitioning is used where necessary (above ~80 bits).

Figure 8 summarizes the results for 128-bit n, comparing the
weight quantization and factor base partitioning strategies. At
this size, both weight quantization and factor base partitioning
are required. Each weight quantization strategy is evaluated
using the constant partition function, and each factor base
partitioning strategy uses regress weight quantization.

While the integer quantization strategy provides the best
results with 0.21% EER (Figure 8, left), it is not compatible
with TrueNorth which can accommodate at most 4 unique
synapse weights. Despite this, performance of the regress and
inverse quantization strategies approach that of the integer
strategy, with 0.26% and 0.24% EERs, respectively. The
uniform strategy performs the worst, having a 0.53% EER.

The factor base partitioning strategies for 128-bit n are
compared in Figure 8 (right). The probabilistic partition func-
tion performs the best, with 0.14% EER, and the logarithmic
partition function is the worst with 0.39% EER. Some possible
explanations for this behavior are provided in the next section.

The weight quantization strategies are compared for in-
creasing n bits in Figure 9 using constant partitioning where
necessary (above ~80 bits). The FPR at the point on the ROC
curve where the FNR equals the CPU FNR is determined
and compared to the CPU FPR, given by FPR/FPRCPU in
Figure 9 (left). For most problem sizes, the regress, inverse,
and integer strategies all have an FPR that is less than 20%
of the CPU FPR, given equal FNRs. The FPR of the uniform
strategy ranges from about 100% to 20% of the CPU FPR.

The EER of each quantization strategy is shown in Figure
9 (right). As n increases, the EER of each strategy generally
decreases from 32 to 80 bits and slightly increases beyond
80 bits. This is expected since at this point the factor base
size exceeds kd = 256, the number of neurons that can
be integrated in one step on TrueNorth, and factor base
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Fig. 10. Factor base partitioning strategy EER for each weight quantization
strategy (given by plot titles). As n bits increases beyond the point at which
factor base partitioning is required (~80 bits), the EER initially increases.

partitioning must be employed. Despite this, good results
are still obtained. A possible explanation for this behavior
is provided in the next section in a simulation study aimed
to better understand the asymptotic behavior of factor base
partitioning.

The EER of each factor base partitioning strategy is shown
in Figure 10 for increasing n under each weight quantization
strategy. Results are only shown for n ranging from 64 to
128 bits since below this range factor base partitioning is not
employed. Note that the partition strategy with the lowest EER
depends on which weight quantization is used. With regress,
inverse, and integer quantization, the inverse logarithmic and
probabilistic partition functions have the best performance.
With uniform weights, the opposite is true. In the best case
weight scenario (integer weights), the EER of each partition
strategy begins to increase beyond 80 bits, the point at which
factor base partitioning is actually used. This is expected due
to the occurrence of spike collisions. We verified that other
ROC curve metrics, such as AUC, follow a similar trend.

VII. SIMULATION STUDY

A. Spike Collisions

In the previous section, it was shown that sieving perfor-
mance (in terms of EER) did not significantly degrade as the
problem size increased on the TrueNorth architecture. How-
ever, performance among the partition functions varied, with
the EER of inverse logarithmic and probabilistic partitioning
generally decreasing with increasing n bits and performing
better than the constant and logarithmic strategies. To better
understand why this is the case, we examined the spike
collision probabilities of each strategy as the factor base size
increases.

The theoretical probability of there being a spike collision
in each of the 256 factor base subsets is given by P2 (Equation
9). Recall from Section V-B that a collision occurs when two
or more factors in a particular subset are active, sending two
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Fig. 11. Spike collision probabilities for each factor base partitioning strategy.
Each line corresponds to one partition neuron. The partition neuron connected
to the smallest factor is denoted by the dashed orange line and to the largest
by the solid red line. Note the different y-axis scales.

or more spikes to the respective partition neuron (Figure 5,
third layer). Given the TrueNorth architecture with kd = 256,
P2 is determined for each partition neuron (i.e., each subset)
for increasing factor base size, shown in Figure 11.

In the constant and logarithmic partitioning strategies, the
subset that contains the smallest factor has the highest prob-
ability of there being a spike collision, and the subset that
contains the largest factor has the lowest probability of colli-
sion. As a result, information from the smaller (more frequent)
factors is lost more often than the larger factors. Alternatively,
in the inverse logarithmic and probabilistic strategies, the
collision probability in the subset that contains the largest
factor grows quicker than that of the smallest factor. However,
the collision probabilities for most subsets in these strategies
remain about an order of magnitude smaller than the constant
and logarithmic strategies, leading to overall reduced spike
collisions.

B. Scaling Up

A natural next step for neuromorphic sieving is to scale
up to larger problem sizes by leveraging the sub-nanosecond
response properties of near future neuromorphic devices; pho-
tonic architectures based on excitable graphene lasers operate
on the order of picoseconds [22]. We estimated the sieving
time of two theoretical neuromorphic architectures with 1 GHz
and 1 THz clock rates, respectively. Both simulated archi-
tectures have 32-bit synaptic weights (using integer weight
quantization) and have a maximum indegree of 256 (using
constant factor base partitioning).

Table III shows the estimated sieving times on both theoreti-
cal architectures for several choices of n bits. For each problem
size on each architecture, the threshold of the smoothness
neuron is determined so as to maximize CPU utilization.
This uses the lowest FNR that doesn’t exceed 100% CPU
utilization, where the check times for larger problem sizes
are predicted by a best-fit polynomial of degree 3 to the
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TABLE III
SIEVING TIMES ON THEORETICAL NEUROMORPHIC ARCHITECTURES.

n bits F tc Ps 1 GHz NPU 1 THz NPU

64 50 3 μs 0.0149 3 μs 4 ns
128 103 15 μs 0.0013 1 ms 1 us
256 105 246 μs 10−5 4 sec 5 ms
512 108 3 ms 10−7 18 days 30 mins
768 1010 10 ms 10−9 1500 years 2 years

1024 1013 30 ms 10−11 107 years 14,000 years

benchmark results in the previous section. The probability of
a value being smooth is given by u−u, where u = lnn

2 lnB , and
the total sieving time is given by Equation 7 divided by the
NPU clock frequency f , T (n) /f . F is estimated by B

2 lnB ,
an approximation to half the number of primes below B.

Although factoring a 1024-bit integer may remain out of
reach using a single NPU, sieving is easily parallelizable
across multiple neuromorphic coprocessors as it requires very
little communication from each processor to a central host. It
is, therefore, not unreasonable to estimate a speedup propor-
tional to the number of NPUs utilized. With tens of thousands
of picosecond neuromorphic chips, a 1024-bit integer may be
able to be factored in several years. For comparison, the 768-
bit RSA took about 2000 CPU years to factor using the number
field sieve (NFS), and the entire task was completed within 2
years using a cluster of several hundred machines [23].

VIII. DISCUSSION

While this work considered modern and near-future neu-
romorphic devices as a coprocessor for integer factorization,
several special purpose devices for sieving have been pro-
posed, and some of them have been implemented [24]. This
includes a mix of analog and digital circuitry, all of which are
application-specific architectures. In this section, we discuss
some of these devices and how they relate to the neuromorphic
sieve.

In 1999, Shamir proposed The Weizmann INstitute Key
Locating Engine (TWINKLE), an optoelectronic sieving de-
vice with a flat topology [25]. Similar to the neuromorphic
sieve, TWINKLE reverses the roles of space and time in the
traditional CPU-based sieve. Primes in the factor base are
represented by flashing light emitting diodes (LEDs), with
one LED for each polynomial root. And like neurons in the
neuromorphic sieve, the LEDs in TWINKLE each flash with
period p and phase r for each root r of each prime p in
the factor base. A single photodetector opposing the LEDs
performs an analog summation in constant time by detecting
the total luminosity emitted on each clock cycle. If the total
luminosity exceeds a certain threshold, the sieving value for
that clock cycle is smooth. Originally projected to have a
clock rate of 10 GHz, and thus be able to sieve 108 values
in 10 ms [25], it was later determined that a clock rate of 1
GHz is more realistic [26]. TWINKLE was estimated to cost
several hundred thousand dollars to design and about $5000
to fabricate [25].

Shamir and Tromer later proposed The Weizmann Institute
Relation Locator (TWIRL) in 2003, which, like TWINKLE,

sieves over time instead of space [27]. Although both TWIN-
KLE and TWIRL can be adapted for either the quadratic sieve
or NFS, TWIRL was designed with the NFS in mind and
has a few key differences from TWINKLE. Notably, TWIRL
uses standard VLSI technology, aims to process many sieving
locations in parallel, and partitions the factor base into three
subsets (largish, small, and tiny) based on magnitude. Each
subset is handled by a slightly different processing station.
The output from the stations that handle small primes is
compressed by a funnel that has a non-zero probability of
overflow, analogous to a spike collision in the neuromorphic
sieve when factor base partitioning is employed.

The neuromorphic sieve, like TWINKLE, aims to leverage
a physics-based computation, specifically in performing a
summation of the log factors. The ability to perform constant
time summation is promised only by architectures that leverage
the underlying physics of the device to compute, for example
by integrating electrical potential (memristive architecture)
or light intensity (photonic architecture). It is worth noting
that while the NS1e conceptually provides a constant time
synaptic integration, being a completely digital architecture,
at the hardware level this is not the case.

Implementation on a continuous, or tickless, architecture
remains a challenge. This work used a discrete neuron model
which assumes that the architecture provides synchronization
and noise-free neuron dynamics. We hypothesize that there
are two main challenges in using a continuous neuron model,
such as on a completely analog architecture with noise:

1) Spike jitter: In the continuous domain, it is not practical
to exactly reproduce the time interval between two spikes. The
period of a tonic spiking neuron may vary slightly from one
moment to the next due to, e.g., noise and the inability to
accurately measure time. In a digital clock, this type of noise
is referred to as clock jitter, whereby the asymptotic frequency
remains constant but the period between clock transition
times varies slightly between cycles. The neuromorphic sieve
requires exact integer periods and synchrony among the tonic
neurons, thus time must be discretized and a time window
around spikes established. The amount of noise will determine
the size of the window and resolution with which multiple
tonic neurons can be synchronized.

2) Spike drift: The frequency of a tonic neuron may drift
over time. On a digital clock, this is referred to as clock
drift. On a neuromorphic architecture, a similar effect could
arise from the slightly differing time response properties
between neurons, which are inherently asynchronous. As each
tonic neuron experiences a different drift, the population will
eventually go out of synchrony and the smoothness neuron
loses the ability to account for all the factors on each step.
There are, perhaps, some insights from clock synchronization
that may be gained in addressing this issue.

These problems also raise several questions: how does
sieving performance degrade due to spike jitter? Can rea-
sonable performance still be obtained if neurons go out of
synchronization? We leave these questions as future work in
which the neuromorphic sieve is implemented on an analog
architecture.
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IX. CONCLUSIONS

This work highlights the ability of neuromorphic devices
to perform computations other than machine learning. A
O (1) test for detecting smooth numbers was described,
which, in most cases, is significantly more accurate than a
CPU-based implementation that performs the same opera-
tion in O (ln lnB) amortized time. Combined with the sub-
nanosecond response properties of near-future neuromorphic
chips, the factorization of integers approaching 1024-bits may
become feasible within the next decade.

Besides speed, there are practical benefits to neuromor-
phic sieving. Current neuromorphic architectures, such as
TrueNorth, offer cost-efficient computation, consuming orders
of magnitude less energy than their CPU counterparts. Since
integer factorization is dominated by the sieving effort, a neu-
romorphic coprocessor can be used to substantially decrease
total energy consumption and cost.

There are several directions for future work. Currently, only
the threshold of the smoothness neuron is varied, although this
need not be the case. Partition neurons could have a threshold
greater than 1, especially for subsets that contain many small
factors causing them to spike if multiple factors in a subset
spike. Future work should also aim to better understand the
effect and asymptotic properties of factor base partitioning.
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